Name:

Matrikel-Nr.:

5

Aufgabe 2 Nichtlineares Zweitor (16 Punkte)

16

Gegeben sei die Hybridbeschreibung eines nichtlinearen Zweitors \mathcal{H} :

$$\begin{bmatrix} u_1 \\ i_2 \end{bmatrix} = \frac{U_{\rm T} \ln \left(\frac{i_1}{I_{\rm s}} + 1\right)}{\beta_0 i_1 \ln \left(\frac{i_1}{I_{\rm s}} + 1\right)} \right].$$

a)* Ist das Zweitor quellenfrei? Begründen Sie Ihre Antwort.

2

$$\begin{bmatrix} u_1(0,0) \\ i_2(0,0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 \checkmark \Rightarrow Das Zweitor ist quellenfrei \checkmark

b)* Geben Sie die Leitwertsbeschreibung des Zweitors an.

1

$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \frac{I_s(e^{\frac{u_1}{U_T}} - 1) \checkmark}{\beta_0 \frac{u_1}{U_T} I_s(e^{\frac{u_1}{U_T}} - 1) \checkmark \checkmark \checkmark}$$

c)* Geben Sie die um den Arbeitspunkt (U_{AP} , I_{AP}) linearisierte Hybridbeschreibung des Zweitors an.

$$\begin{bmatrix} u_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} U_{1,\text{AP}} \\ I_{2,\text{AP}} \end{bmatrix} + \boldsymbol{J_h}(\boldsymbol{U}_{\text{AP}},\boldsymbol{I}_{\text{AP}}) \begin{bmatrix} \Delta i_1 \\ \Delta u_2 \end{bmatrix} \sqrt{\checkmark}$$

$$\boldsymbol{J_h}(\boldsymbol{U}_{\text{AP}},\boldsymbol{I}_{\text{AP}}) = \begin{bmatrix} \frac{U_{\text{T}}}{I_{\text{s}}} \frac{1}{I_{\text{1,AP}}/I_{\text{s}}+1} & 0\\ \frac{\beta_0}{I_{\text{s}}} \frac{I_{\text{1,AP}}}{I_{\text{1,AP}}/I_{\text{s}}+1} + \beta_0 \ln \left(\frac{I_{\text{1,AP}}}{I_{\text{s}}} + 1 \right) & 0 \end{bmatrix} \sqrt{\checkmark} \sqrt{\checkmark}$$

d) Zeichnen Sie das Kleinsignal-Ersatzschaltbild des Zweitors \mathcal{H} im gegebenen Arbeitspunkt. Achten Sie auf eine korrekte Beschriftung!

$$\Delta u_1 \qquad \qquad \Delta i_2$$

$$\Delta u_1 \qquad \qquad \qquad \Delta u_2$$

$$r = \frac{U_T}{I_s} \frac{1}{I_{1,AP}/I_s+1} (=h_{11}) \checkmark \text{ und } \beta = \frac{\beta_0}{I_s} \frac{I_{1,AP}}{I_{1,AP}/I_s+1} + \beta_0 \ln \left(\frac{I_{1,AP}}{I_s} + 1\right) (=h_{21}) \checkmark$$

Aufgabe 4 Schaltung zur Spannungsstabilisierung (31 Punkte)

Gegeben sei die Schaltung in Bild 4 zur Spannungsstabilisierung. Die Aufgabe der Schaltung besteht darin, die Schwankungen $\Delta u_{\rm e}$ der Eingangsspannung $u_{\rm e}=U_{\rm e}+\Delta u_{\rm e}$ in der Ausgangsspannung $u_{\rm a}=U_{\rm a}+\Delta u_{\rm a}$ zu unterdrücken, d. h. deren Spannungsschwankungen $\Delta u_{\rm a}$ so klein wie möglich zu halten.

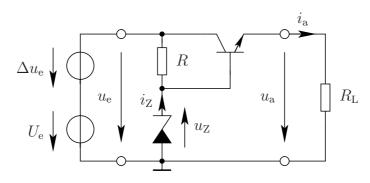


Bild 4: Schaltung zur Spannungsstabilisierung

Zunächst soll eine Großsignal-Analyse der Schaltung vorgenommen werden. Bild 5 zeigt das Großsignal-Ersatzschaltbild (ESB) des Transistors.

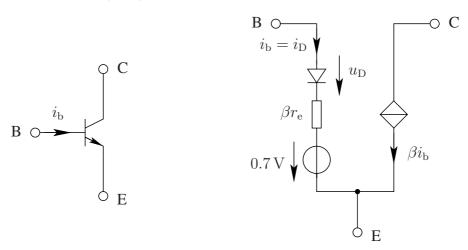
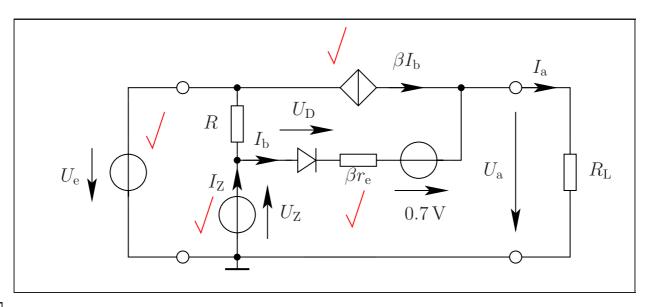


Bild 5: Großsignal-ESB des Transistors

a)* Zeichnen Sie das Großsignal-ESB der Schaltung aus Bild 4 unter Verwendung des Großsignal-Transistor-ESBes in Bild 5. Ersetzen Sie die Zenerdiode durch eine ideale Spannungsquelle mit dem Wert $U_{\rm Z}$.

Hinweis: Die Spannungsschwankungen werden bei einer Großsignal-Analyse zu Null gesetzt, d. h. $\Delta u_{\rm e}=\Delta u_{\rm a}=0,\,u_{\rm a}=U_{\rm a},\,i_{\rm a}=I_{\rm a}$ und $u_{\rm Z}=U_{\rm Z}.$



1 b)* Welche Beziehung erzwingt der Widerstand $R_{\rm L}$ zwischen $U_{\rm a}$ und $I_{\rm a}$?

$$U_{\rm a} = R_{\rm L} I_{\rm a} \sqrt{}$$

1 c) Berechnen Sie I_a in Abhängigkeit von β und I_b .

$$I_{\rm a} = \beta I_{\rm b} + I_{\rm b} = (\beta + 1) I_{\rm b} \sqrt{}$$

d) Ermitteln Sie aus den Ergebnissen von Teilaufgabe b) und c) einen Ausdruck für $I_{\rm b}$ in Abhängigkeit von $U_{\rm a}$, β und $R_{\rm L}$.

$$U_{\rm a} = R_{\rm L} (\beta + 1) I_{\rm b}$$
$$I_{\rm b} = \frac{U_{\rm a}}{R_{\rm L} (\beta + 1)} \checkmark$$

e) Berechnen Sie mittels einer geeigneten Maschengleichung und dem Ergebnis aus Teilaufgabe d) die Ausgangsspannung $U_{\rm a}$ in Abhängigkeit von $U_{\rm Z}$, β , $R_{\rm L}$ und $r_{\rm e}$. **Hinweis:** Die Diode wird im Durchlaßbereich betrieben, d. h. $U_{\rm D}=0$.

$$U_{\rm a} = -U_{\rm Z} - r_{\rm e}\beta I_{\rm b} - 0.7\,{\rm V} = -U_{\rm Z} - \frac{r_{\rm e}\beta U_{\rm a}}{R_{\rm L}\,(\beta + 1)} - 0.7\,{\rm V}\sqrt{\surd}$$

$$U_{\rm a} = \frac{R_{\rm L}\,(\beta + 1)}{R_{\rm L}\,(\beta + 1) + r_{\rm e}\beta}\,(-U_{\rm Z} - 0.7\,{\rm V})\sqrt{\surd}$$

f) Welcher Ausdruck ergibt sich für $U_{\rm a}$ falls $r_{\rm e} \to 0$?

$$U_{\rm a} = -U_{\rm Z} - 0.7 \,\mathrm{V} \sqrt{}$$

Die Kennlinie der Zenerdiode ist im Bild 6 gegeben.

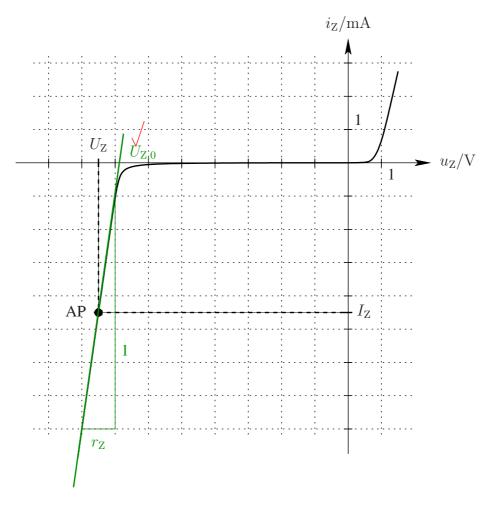


Bild 6: Kennlinie der Zenerdiode

g)* Nennen Sie drei Eigenschaften der Zenerdiode als resistives Eintor!

gepolt, passiv, quellenfrei $\sqrt{\sqrt{\sqrt{}}}$

Nun soll die Großsignal-Ersatzschaltung der Zenerdiode verbessert werden, indem sie durch eine Spannungsquelle mit Innenwiderstand ersetzt wird, die die Kennlinie der Zenerdiode im Arbeitspunkt $AP(U_Z, I_Z)$ (siehe Bild 6) bestmöglich approximiert.

h)* Zeichnen Sie die Kennlinie der Großsignal-Ersatzschaltung für die Zenerdiode in Bild 6 ein und bestimmen Sie graphisch die Werte der Elemente des ESBes, d. h. den Innenwiderstand $r_{\rm Z}$ und die Leerlaufspannung $U_{\rm Z,0}$.

I

3

3

13

$$r_{\rm Z} = \frac{1 \, \rm V}{7 \, \rm mA} = \frac{1}{7} \, \rm k\Omega \sqrt{\qquad} U_{\rm Z,0} = -6 \frac{6}{7} \, \rm V \sqrt{}$$

Nun folgt eine Kleinsignal-Analyse. Bild 7 zeigt das Kleinsignal-ESB des Transistors.

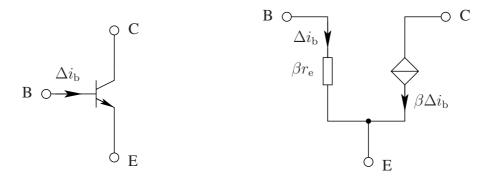
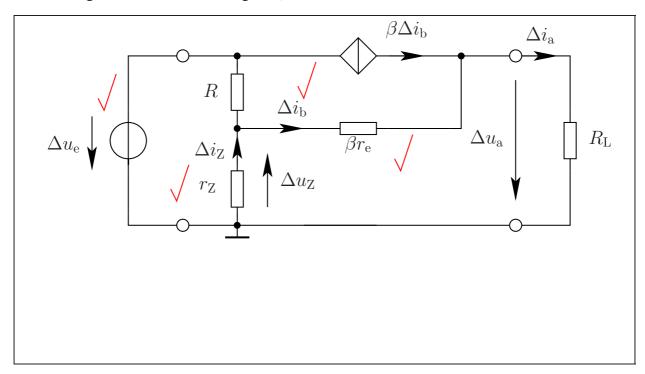


Bild 7: Kleinsignal-ESB des Transistors

1 i)* Wie sieht das lineare Kleinsignal-ESB der Zenerdiode aus?

Widerstand mit dem Wert $r_{\rm Z}\sqrt{}$

j) Zeichnen Sie schließlich das Kleinsignal-ESB der Gesamtschaltung aus Bild 4 unter Verwendung von Bild 7 und Teilaufgabe i).



Im folgenden soll die Abhängigkeit der Kleinsignal-Ausgangsspannung $\Delta u_{\rm a}$ von der Kleinsignal-Eingangsspannung $\Delta u_{\rm e}$ untersucht werden.

k) Bestimmen Sie zunächst $\Delta u_{\rm a}$ in Abhängigkeit von $\Delta u_{\rm Z}$, β , $R_{\rm L}$ und $r_{\rm e}$. **Hinweis:** Der Lösungsweg muß erkennbar sein!

$$\Delta u_{\rm a} = R_{\rm L} \Delta i_{\rm a} = R_{\rm L} (\beta + 1) \Delta i_{\rm b} \sqrt{\checkmark}$$

$$\Rightarrow \Delta i_{\rm b} = \frac{\Delta u_{\rm a}}{R_{\rm L} (\beta + 1)}$$

$$\Delta u_{\rm a} = -\Delta u_{\rm Z} - r_{\rm e} \beta \Delta i_{\rm b} = -\Delta u_{\rm Z} - \frac{r_{\rm e} \beta \Delta u_{\rm a}}{R_{\rm L} (\beta + 1)} \sqrt{\checkmark}$$

$$\Delta u_{\rm a} = -\frac{R_{\rm L} (\beta + 1)}{R_{\rm L} (\beta + 1) + r_{\rm e} \beta} \Delta u_{\rm Z} \sqrt{\checkmark}$$

l) Berechnen Sie nun $\Delta u_{\rm Z}$ in Abhängigkeit von $\Delta u_{\rm e}$, R und $r_{\rm Z}$ für die Näherung $\Delta i_{\rm b} \approx 0$ und geben Sie schließlich $\Delta u_{\rm a}$ in Abhängigkeit von $\Delta u_{\rm e}$, R, $r_{\rm Z}$, β , $R_{\rm L}$ und $r_{\rm e}$ an. Verwenden Sie dazu das Ergebnis aus Teilaufgabe k).

$$\Delta u_{\rm Z} = -\frac{r_{\rm Z}}{r_{\rm Z} + R} \Delta u_{\rm e} \checkmark$$

$$\Delta u_{\rm a} = \frac{R_{\rm L} (\beta + 1)}{R_{\rm L} (\beta + 1) + r_{\rm e} \beta} \frac{r_{\rm Z}}{r_{\rm Z} + R} \Delta u_{\rm e} \checkmark$$

m) Welche Beziehung ergibt sich zwischen $\Delta u_{\rm a}$ und $\Delta u_{\rm e}$ für $r_{\rm Z} \to 0$? Was bedeutet dies für die Funktionsweise der Schaltung?

$$\Delta u_{\rm a} \to 0 \sqrt{}$$

Schwankungen $\Delta u_{\rm e}$ der Eingangsspannung werden am Ausgang ideal unterdrückt \surd

Aufgabe 1 Resistives Zweitor (29 Punkte)

Gegeben sei das folgende resistive Netzwerk in Bild 1, das aus der Verschaltung der Widerstände R_1, R_2, R_3 zu einem Zweitor bestehe. Es gelte: $R_1, R_2, R_3 > 0$.

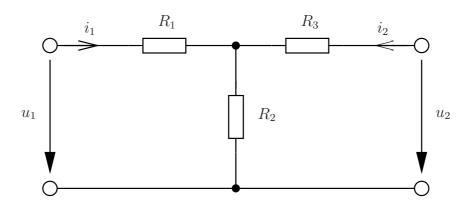


Bild 1: T-Glied

4 a)* Geben Sie die Widerstandsmatrix R_T des Netzwerkes in Bild 1 an!

$$\frac{u_1}{i_1}\Big|_{i_2=0} = R_1 + R_2 \qquad \frac{u_2}{i_2}\Big|_{i_1=0} = R_2 + R_3$$

$$\frac{u_1}{i_2}\Big|_{i_1=0} = R_2 \qquad \frac{u_2}{i_1}\Big|_{i_2=0} = R_2$$

$$\Rightarrow \mathbf{R}_{\mathrm{T}} = \begin{bmatrix} R_1 + R_2 \checkmark & R_2 \checkmark \\ R_2 \checkmark & R_2 + R_3 \checkmark \end{bmatrix}$$

1 b)* Ist das Zweitor reziprok? Begründen Sie Ihre Antwort.

Ja, wegen $oldsymbol{R}_{\mathrm{T}} = oldsymbol{R}_{\mathrm{T}}^{\mathrm{T}}.oldsymbol{\checkmark}$

3

c)* Ist das Zweitor umkehrbar? Begründen Sie Ihre Antwort.

Nein!
$$\sqrt{R'_{\rm T}}$$
 des "umgedrehten" Zweitores lautet: $R'_{\rm T} = \begin{bmatrix} R_2 + R_3 & R_2 \\ R_2 & R_1 + R_2 \end{bmatrix} \neq R_{\rm T} \sqrt{R'_{\rm T}}$

d)* Geben Sie mit Hilfe der Widerstandsmatrix $m{R}_{
m T}$ die implizite Beschreibung des Zweitores $[m{MN}]$ $m{u}$ i i = 0 an.

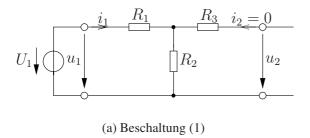
$$oldsymbol{u} = oldsymbol{R}_{\mathrm{T}}oldsymbol{i}, \quad oldsymbol{u} - oldsymbol{R}_{\mathrm{T}}oldsymbol{i} = oldsymbol{0}$$

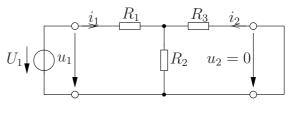
$$Mu + Ni = 0$$

$$\Rightarrow M = 1 \sqrt{,} \quad N = -R_{
m T} \sqrt{}$$

e)* Geben Sie jetzt auch die Betriebsmatrix $\begin{bmatrix} U \\ I \end{bmatrix}$ der parametrisierten Beschreibung des Zweitores an, die Sie durch die beiden folgenden Beschaltungen in Bild 2 erhalten.

6





(b) Beschaltung (2)

Bild 2: Beschaltungen des T-Gliedes

$$u_{1}^{(1)} = U_{1} \checkmark$$

$$u_{2}^{(1)} = \frac{R_{2}}{R_{1} + R_{2}} U_{1} \checkmark$$

$$i_{1}^{(1)} = \frac{U_{1}}{R_{1} + R_{2}} \checkmark$$

$$i_{2}^{(1)} = 0 \checkmark$$

$$u_{1}^{(2)} = U_{1}$$

$$u_{2}^{(2)} = 0$$

$$\Rightarrow \begin{bmatrix} \mathbf{U} \\ \mathbf{I} \end{bmatrix} = \begin{bmatrix} U_{1} & U_{1} \\ \frac{U_{1}R_{2}}{R_{1} + R_{2}} & 0 \\ \frac{U_{1}}{R_{1} + R_{2}} & \frac{U_{1}(R_{2} + R_{3})}{R_{1}(R_{2} + R_{3}) + R_{2}R_{3}} \\ 0 & -\frac{U_{1}R_{2}}{R_{1}(R_{2} + R_{3}) + R_{2}R_{3}} \end{bmatrix}$$

$$i_{1}^{(2)} = \frac{U_{1}(R_{2} + R_{3})}{R_{1}(R_{2} + R_{3}) + R_{2}R_{3}} \checkmark$$

$$i_{2}^{(2)} = -\frac{U_{1}R_{2}}{R_{1}(R_{2} + R_{3}) + R_{2}R_{3}} \checkmark$$

f) Können Sie mit geeigneten Dimensionierungen von R_1, R_2, R_3 in Bild 1 eine beliebige Widerstandsmatrix $\mathbf{R} = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$ mit $\alpha \neq \beta \neq \gamma \neq \delta$ und $\alpha, \beta, \gamma, \delta > 0$ erzielen? Begründen Sie Ihre Antwort!

Nein! $\sqrt{}$ Man kann nur ein $\mathbf{R} = \begin{bmatrix} \alpha & \gamma \\ \gamma & \delta \end{bmatrix}$ erzielen, da man zu wenige Freiheitsgrade hat. $\sqrt{}$

Die im Folgenden zu realisierende Matrix $\boldsymbol{R} = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$ soll in eine Summe von zwei Teilmatrizen \boldsymbol{R}_1 und \boldsymbol{R}_2 aufgespalten werden. Dabei gelte: $\boldsymbol{R}_1 = \begin{bmatrix} \alpha & \gamma \\ \gamma & \delta \end{bmatrix}$.

g)* Was ergibt sich daraus für die Matrix R_2 , und welches Zweitor besitzt eine solche Widerstandsmatrix?

$$oldsymbol{R} = oldsymbol{R}_1 + oldsymbol{R}, \quad oldsymbol{R}_2 = oldsymbol{R} - oldsymbol{R}_1 = \begin{bmatrix} 0 & eta - \gamma \\ 0 & 0 \end{bmatrix} oldsymbol{\checkmark} oldsymbol{\checkmark}$$

 \Rightarrow stromgesteuerte Spannungsquelle ISU $\sqrt{\checkmark}$

5

h) Ergänzen Sie das Zweitor mit der Widerstandsbeschreibung $\begin{bmatrix} u_1'' \\ u_2'' \end{bmatrix} = \mathbf{R}_2 \begin{bmatrix} i_1'' \\ i_2'' \end{bmatrix}$ im gestrichelten Kasten \mathcal{F}_2 des Bildes 3 mit Hilfe Ihres Ergebnisses aus der vorherigen Teilaufgabe, und beschriften Sie die eingezeichneten Netzwerksymbole.

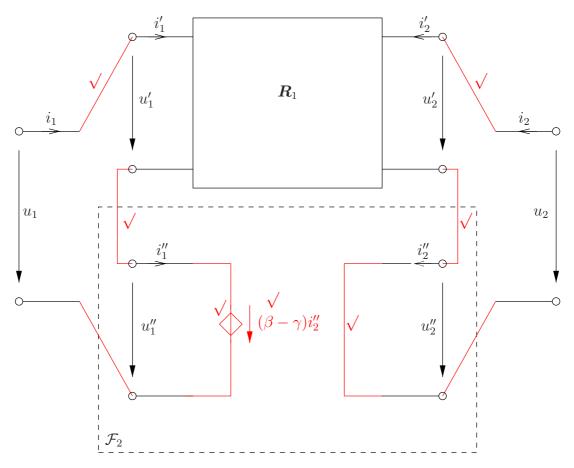


Bild 3: Zweitor-Zusammenschaltung

i)* Verschalten Sie nun in Bild 3 die beiden Zweitore so, dass Sie als Resultat ein Zweitor mit der Widerstandsmatrix R erhalten. Wie nennt man diese Art der Zusammenschaltung?

_
_
٦,
$\boldsymbol{\mathcal{I}}$

Reihenschaltung $\sqrt{}$

Aufgabe 4 Bipolartransistoren (16 Punkte)

Gegeben ist folgendes Zweitor aus Bipolartransistoren.

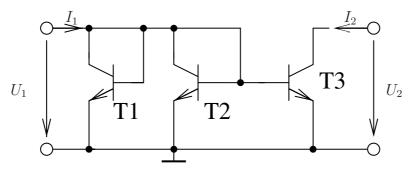


Bild 7. Zweitor mit Bipolartransistoren

Alle drei Bipolartransistoren T1, T2 und T3 haben *identische* Eigenschaften und werden durch folgendes Großsignal-Ersatzschaltbild im Vorwärtsbetrieb beschrieben.

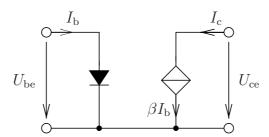
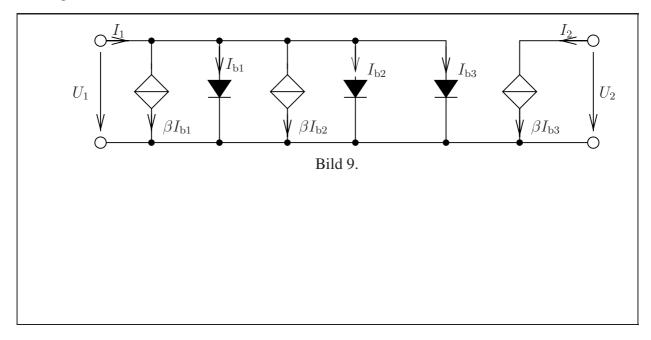


Bild 8. Großsignal-Ersatzschaltbild eines npn-Bipolartransistors

a)* Geben Sie die Ersatzschaltung des Zweitors (Bild 7) unter Verwendung des Großsignal-Ersatzschaltbilds aus Bild 8 an.



5

15

b) Bestimmen Sie den Strom I_2 in Abhängigkeit von I_1 und den Transistorparametern. Geben Sie auch die Zwischenüberlegungen in der Herleitung an!

$$I_{2} = \beta I_{b3} \checkmark$$

$$I_{b3} = I_{s}(\exp^{U_{be3}/U_{T}} - 1), U_{be1} = U_{be2} = U_{be3} = U_{1} \checkmark (KVL)$$

$$I_{b1} = I_{b2} = I_{b3} \checkmark$$

$$I_{1} = (\beta + 1)I_{b1} + (\beta + 1)I_{b2} + I_{b3} \checkmark (KCL)$$

$$I_{1} = I_{b3}(2\beta + 3)$$

$$I_{2} = I_{1}\beta/(2\beta + 3) \checkmark$$

c) Wie groß ist I_2 für $\beta \to \infty$?

 $\lim_{\beta \to \infty} I_2 = I_1/2 \sqrt{}$

d) Welche Funktion erfüllt das Zweitor (Bild 7) in diesem Fall?

Stromteiler bzw. Stromspiegel mit Faktor 1/2 $\sqrt{}$

e) Geben Sie die hybride Beschreibung des Zweitors für endliche β an.

 $U_1 = U_T \ln\left(\frac{I_1}{(3+2\beta)I_s} + 1\right)$ $I_2 = \frac{\beta}{3+2\beta} I_1$

f) Nennen Sie eine Beschreibungsform des Zweitors (Bild 7), die nicht existiert. Begründen Sie **Ihre Antwort!**

z.B. inverse Hybrid- oder Widerstandsbeschreibung, da U_2 (beliebig) eine steuernde Größe ist.