Kapitel 8 - Allgemeine Analyseverfahren

→ Systematische Methoden um Ströme und Spannungen (unbekannt) mithilfe der bekannten Verbindungsstruktur und Bauelementegalgleichungen, symbolisch (der Hand) oder numerisch (rechnergestützt) zu bestimmen.

→ 2 Schritte:

1) Beschreibung der Verbindungsstruktur (Zeichnen eines Digraphs, siehe Kap. 2)

2) Charakterisierung der Netzwerkelemente (Bauelementegalgleichungen)

→ Verbindungsmehrter: Beschrieben durch den Digraph, also nur Drähte oder keine Verbindungsmehrter.

Eigenschaften: * Anzahl der Tore = Anzahl der Zweige

→ zeitinvariant

→ verlustlos (Beweis im Skript)

→ stark linear

→ reziprok

→ Knoteninjektkmatrix

→ enthalte alle KVL und KCL-Gleichungen

→ Spalten, bzw. Zeilen sind also linear abhängig.

→ Tellegerscher Satz: Bildbeschreibung lautet: $\mathbf{u} = \mathbf{A} \cdot \mathbf{v} + \mathbf{b}$ (siehe auch Kap. 2)

→ Satz besagt: $\mathbf{W} \cdot \mathbf{I} = \mathbf{0}$

→ Wenn zwei Schaltungen gleiche geometrische Gestalt (Topologie) besitzen, also mit gleichen Digraph beschrieben werden können, dann sind ihre Verbindungsst allemfalls völlig äquivalent zueinander, unabhängig davon, wie die beschaltet werden.

→ Hierzu mit Hilfe KCL und KVL der Tellegersche Satz hergeleitet. Das kann man aber auch anders machen. D.h., es reichen 2 von dieser drei Gesetze um eine Schaltung völlig zu beschreiben. Das kann mit den anderen beiden hergeleitet werden. Diese drei Gesetze sind:

1) KCL

2) KVL

3) Tellegerscher Satz

→ Systematisches Aufstellen der Kirchhoffschen Gleichungen

→ Um die $n \times 1$ linear unabhängige Knotengleichungen (KCL) und $b \times (n-1)$ linear unabhängigen Schleifenegleichungen (KVL) zu bestimmen.

1) Raumkonzept: Geeignete Verteilung des Digraphs (siehe AuD) und systematisches Aufstellen der KCL und KVL Gleichungen anschließend.

2) Knotenspannungsanalyse: Einführung zusätzlicher Knotenspannungen, die jede Knoten- und Masse, dann Aufstellen der Gleichungen dieses größeren Mehrtors mit mehreren Unbekannten, wird aber im folgenden reduziert werden.

→ Für ausführliche Erklärung siehe bitte Skript.

→ Tableaugleichungen

→ Alle Gleichungen, d.h., sowohl die des Verbindungsmehrtors als auch die der Bauelemente, in Matrix-Vektor-Schreibweise. Die Lösung dieses Gleichungssystems ist der Arbeitspunkt des Verbindungsmehrtors und Kennlinien der Bauelemente gleichzeitig.

→ Tableaugleichungen einer Schaltung:

\[
\begin{align*}
\text{Verbindungsmehrtor:} & \quad \mathbf{K} \cdot \mathbf{u} = \mathbf{0} \\
\text{Konsist.} & \quad \mathbf{K} \cdot \mathbf{i} = \mathbf{0} \\
\text{Erfüllt (verbinds. unabhängig):} & \quad \mathbf{E} \cdot \text{Verschließten} \\
\text{Vektor (Quellen):} & \quad \mathbf{Q}
\end{align*}
\]
Knotenspannungsanalyse führt man die Knotenspannungen zunächst ein:

\[A^T b \mathbf{Q} \mathbf{u}_k = 0 \]

\[\mathbf{Q} \mathbf{u} = 0 \]

\[\mathbf{Q} \mathbf{v} = e \]

Für duales Maschinentableau, siehe Skript.

* Reduzierte Knotenspannungsanalyse (wichtig, klausurrelevant)

Um das Gleichungssystem im Knotentableau zu reduzieren, sollen alle Elemente spannungs-gesteuert sein.

Schritte (wenn alle Elemente spannungs-gesteuert sind):

1. Stromquellen und Paralleleitwerte zu einer Kante des Verbindungsmöhrers zusammenfassen.
2. Knotentableau aufstellen:

\[A^T b \mathbf{Q} \mathbf{u}_k = 0 \]

Zeile 3 nach \(i \) auflösen:

\[M \cdot u + N \cdot i = e \]

\[\Rightarrow i = -M^{-1} \cdot M \cdot u + N^{-1} \cdot e \]

\[\Rightarrow i = Y \cdot u + i_o \]

\(N \) ist invertierbar, da alle Elemente spannungs-gesteuert sind.

3. mithilfe Zeile 4 eliminieren:

\[u = A^T \cdot u_k \Rightarrow i = Y \cdot A^T \cdot u_k + i_o \]

4. Einsetzen in Zeile 2:

\[A \cdot i = 0 \]

\[\Rightarrow A \cdot Y \cdot A^T \cdot u_k + A \cdot i_o = 0 \]

\[\Rightarrow Y \cdot u_k = i_q \]

\[\Rightarrow i_q = \text{Knotenleitwertsmatrix} \]

\(i_q \): Knotenleitwertsmatrix

So lässt man die übliche Bezeichnung \(Y_k \cdot u_k = i_q \) her, wobei \(Y_k \) und \(i_q \) mit folgendem Vorgehen by inspection zu bestimmen sind. Wenn nicht alle Elemente spannungs-gesteuert sind, kann man mit gewissen Tricks dieses gewährleisten. Die folgen nun auch.

Aufstellen von \(Y_k \) und \(i_q \) by inspection:

1. Methoden um nicht spannungs-gesteuerte Elemente in solche umzuwandeln.

1.1. Quellenumwandlung:

Spannungs-gesteuerte Elemente: Stromquellen, USI, Leitwerte. Diese lassen sich direkt in \(Y_k \) bzw. \(i_q \) eintragen.

Tritt eine unabhängige Spannungsquelle \(u \) in Reihe mit einem Widerstand auf, so kann man durch Quellenwandlung diese strom-gesteuerten Elemente in spannungs-gesteuerte umwandeln:

Analog bei gesteuerter Spannungsquelle.
1.2 Dualwandlung (Gyrorator):

- USI, ISI, ISI lassen sich nicht direkt in \(Y_k \) eintragen, aber durch Dualwandlung mit Gyrotoren kann man diese zu USI umwandeln.

Bsp: ISI zu USI

- Gyrorator ist durch Parallelschaltung zweier USI realisierbar und ist damit einfach in \(Y_k \) eintragen.
- Idealer Übertrager ist durch Parallelschaltung zweier Gyrotoren realisierbar.
- Operationsverstärker sind mit geeignetem ESB in jeweiligem Bereich zu ersetzen. Einbau eines Nullors in \(Y_k \) folgt.
- Transistoren sind analog mit ESU zu ersetzen.

1.3 Spannungsquelle ohne Widerstand in Serie:

a) entweder mit Gyrorator:

b) oder kreativ:

- Einbau der Elemente von \(Y_k \) (zunächst ohne Nullor zu berücksichtigen)

 \[\begin{bmatrix} +G & -G \\ -G & +G \end{bmatrix} \]

 UNI

 \[\begin{bmatrix} +g_m & -g_m \\ -g_m & +g_m \end{bmatrix} \]

- Einbau der Elemente von \(I_q \):

 Stromquellen:

- Vorzeichen sind hier andersum, da wir auf der anderen Seite der Gleichung sind.

\[Y_k \cdot I_q = I_q \]
Nullollruckbau:
- Nullator:
 \[\begin{array}{c}
 \text{Bei } Y_k:\ \\
 \text{Spalte } \alpha + \beta \text{ in Spalte } \alpha \text{ eintragen} \\
 \text{Spalte } \beta \text{ streichen und } u_{k \beta} \text{ in } Y_k \text{ (6te Zeile von } Y_k) \text{ streichen}
 \end{array} \]
- Norlator:
 \[\begin{array}{c}
 \text{Zeile } \alpha + \beta \text{ in Zeile } \alpha \text{ eintragen} \\
 \text{Zeile } \beta \text{ der } Y_k \text{ und } i_k \text{ streichen}
 \end{array} \]
- Masse: Wegstreichen

Kapitel 9 - Netzwerkeigenschaften

- Eigenschaften linearer Netzwerke
- Superpositionsprinzip:

Bsp:

\[\begin{array}{c}
 = \\
+ \\
\end{array} \]

Zwei- oder Ersatzschaltungen:

1) Helmholtz/Thévenin-Ersatzzweipol:

\[\begin{array}{c}
\text{linear} \\
\text{resistiv} \\
\text{eindeutig} \\
\text{lösbar}
\end{array} \begin{array}{c}
\text{beliebige} \\
\text{Beschaltung}
\end{array} = \begin{array}{c}
\text{beliebige} \\
\text{Beschaltung}
\end{array} \]

2) Mayer/Norton-Ersatzzweipol:

\[\begin{array}{c}
\text{linear} \\
\text{resistiv} \\
\text{eindeutig} \\
\text{lösbar}
\end{array} \begin{array}{c}
\text{beliebige} \\
\text{Beschaltung}
\end{array} = \begin{array}{c}
\text{beliebige} \\
\text{Beschaltung}
\end{array} \]

Passivität: Ein Ein- oder Mehrtor, das im Inneren nur passive Elemente hat, ist als Ganzes auch passiv.